Optimising the Operation of Regional Lines

Dr. Alexander Geistler
GNSS-ZEL 2008, June 06th 2008
Table of content

<table>
<thead>
<tr>
<th>1</th>
<th>Cost reduction for non-ERTMS lines?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>What is really needed?</td>
</tr>
<tr>
<td>3</td>
<td>Which Solutions exist?</td>
</tr>
<tr>
<td>4</td>
<td>Functional / Operational / Technical Level</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of Solutions</td>
</tr>
<tr>
<td>6</td>
<td>BOMBARDIER INTERFLO Solutions and Conclusion</td>
</tr>
</tbody>
</table>
Cost reduction for non-ERTMS lines?

- **Market potential for non-ERTMS solutions**
 - 30,000 km of infrastructure (from Chart 23b: 16%)
 - 71% of companies run non-ERTMS services
 - 350,000 people on staff are involved

- **Regional railway service is indicatively**
 - a trip of maximum 70km and
 - a transit time of 30 to 60 min

- **Low cost attempt proposed by UIC**
 - less staff
 - simpler infrastructure
 - no costly retrofit of rolling stock
 - train detection / traffic control based on autonomous train localisation & speed measurement
 - GNSS supported driver assistant + movement authority reinforcement on board

Standard solution based on proven technology for all situations?

- Figures taken from ERRAC study on „Suburban and Regional Railways Landscape in Europe“, Oct. 2006

Chart 23b: Total track length in km of infrastructure that is (or is not) part of the European rail system

- Total track length is about 185,000 km.

Chart 23a: Percentage of companies running services on rail infrastructure physically, functionally or not separated from the European rail system

- No separation from European rail system: 36%
- Physical Separation: 35%
- Functional Separation: 29%
The Agony of Choice
Performance vs. Expenditures vs. Workload

The workload of dispatchers increases with traffic and results in a higher number of incidents.

Traffic Management from a central control room will:

- avoid inspectors in each station
- reduce the number of incidents
- reduce the workload when traffic increases

Expenditures for train protection
What is really needed?

Requirements Analysis

<table>
<thead>
<tr>
<th>Procedures</th>
<th>Tolerable Hazard</th>
<th>Train Frequency</th>
<th>Passengers per Train</th>
<th>Staff per km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main lines</td>
<td>Green</td>
<td>Yellow</td>
<td>Green</td>
<td>Red</td>
</tr>
<tr>
<td>Metros</td>
<td>Green</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>Regional lines</td>
<td>Green</td>
<td>Green</td>
<td>?</td>
<td>Green</td>
</tr>
<tr>
<td>Trams</td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

Typical qualitative performance parameters:
- **Low**
- **Medium**
- **High**

To be quantified
Which alternative Solutions exist?
Modelling and Instantiation

Example
System functions:
- Route setting
- Interlocking

Rules
Procedures
Responsibility

Points
(+ machine)
(+ control)
switch position info
+ switch lock

Functional level

Operational level

Technical level

maps to

fulfils

fulfils

supports

Technical innovations:
- EBI Star
- EBI Screen
- EBI Drive

Formal model

© Bombardier Inc. or its subsidiaries. All rights reserved.
Functional Level

Communication with centre

Localisation within the network

Activation of level crossings

Operation of points
Operational Level

Activity diagram for phone block operation

- Examples for required activities according to rules in regulation
 - Find out time for next departure;
 - Find out current time;
 - Find out train number and next train reporting point;
 - Train report – offer;
 - Entry in train record book;
 - ...
Technical Level

- **Communication**
 - Personal
 - Telephone
 - Data radio
 - Interlocking (Operator <-> Operator)
 - Signals (Operator -> Driver)

- **Localisation**
 - Direct view
 - GPS (+ odometer + …)
 - Axle counters / track circuits
 - Balises
 - Lindometer

- **Level crossings**
 - Activating/deactivating
 - Track switches
 - IR connection
 - Data radio
 - Telephone
 - Supervision
 - Signal (via interlocking)
 - Personal
 - Remote
 - Train driver

- **Point / Route setting**
 - Locally operated
 - Manual
 - Motorised
 - Remotely operated
 - Direct
 - Indirect
Technical Level (continued)

- **Automatic Train Protection**
 - Train Supervision
 - Train Protection
 - Brake Interface

Drivers MMI

Radio

Position reference system

Speed and distance unit + Tachometer

Brake interface

Computer unit
Technical Level (continued)

- **Control Centre**
 - System Overview
 - Tracking
 - Traffic Management

- **Driver-Machine Interface**
 - Driver ID
 - Train ID
 - Train configuration
 - Movement Authority
Comparison of Solutions

- Optimising criteria
 - Safety
 - Performance
 - Costs
 - Stress for the personnel

- When applying the same model, various alternative solutions can be compared with regard to the optimising criteria.

- Low cost solutions are possible if
 - technological progress provides equal functionalities at lower cost
 - safe functions may be fulfilled by operational procedures
 - operational procedures are technically supervised
 - a lower safety integrity level can be chosen for technical components as long as the remaining hazard risk is tolerable.
INTERFLO Solutions

- **INTERFLO 50**
 GPS-based train location and information system for train supervision

- **INTERFLO 100**
 Proven technology for regional main lines

- **INTERFLO 150**
 Radio-based signalling for regional / industrial lines

- **INTERFLO 200**
 Enhanced signalling solution for main lines

- **INTERFLO 250**
 ERTMS Level 1 solution comprising all the trackside products required for main line operations

- **INTERFLO 450**
 ERTMS Level 2 solution offering speeds over 250 Km/h

- **INTERFLO 550**
 ERTMS for regional lines
INTERFLO Solutions comprise a variety of products

INTERFLO®
Main line Solutions

- EBI* Screen control room
- EBI Link wayside equipment
- EBI Lock computerised interlocking
- EBI Com radio block centre
- EBI Star Telematic units

- EBI Track train detection
- EBI Switch point machines
- EBI Gate level crossings
- EBI Light signals
- EBI Cab ATC onboard equipment

* Trademark(s) of Bombardier Inc. or its subsidiaries
Conclusion

- The current approach to develop individual solutions for low traffic density lines is not cost-efficient.

- A better approach would be:
 - Assess the needs of railways for the operation on low-traffic density lines
 - Develop a common model of the regional non-ERTMS railway system
 - Derive the instantiated model of a specific regional line
 - Choose components from the wide range of available products
 - Introduce new technologies like Lindometer or GNSS
 - Compare alternative solutions by the optimising criteria
 - Select the most efficient solution that fulfils the safety targets

Bombardier has a solution available for regional ERTMS lines and is the best partner to go for a solution for non-ERTMS lines.
Thank you very much!

Learn more about our commitment to sustainable mobility on:
www.theclimateisrightfortrains.com